Problem 93

Arithmetic expressions

By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four arithmetic operations (+, , *, /) and brackets/parentheses, it is possible to form different positive integer targets.

For example,

8 = (4 * (1 + 3)) / 2

14 = 4 * (3 + 1 / 2)

19 = 4 * (2 + 3) 1

36 = 3 * 4 * (2 + 1)

Note that concatenations of the digits, like 12 + 34, are not allowed.

Using the set, {1, 2, 3, 4}, it is possible to obtain thirty-one different target numbers of which 36 is the maximum, and each of the numbers 1 to 28 can be obtained before encountering the first non-expressible number.

Find the set of four distinct digits, *a* *b* < *c* *d*, for which the longest set of consecutive positive integers, 1 to *n*, can be obtained, giving your answer as a string: *abcd*.

**
These problems are part of
Project Euler
and are licensed under
CC BY-NC-SA 2.0 UK
**